DAGDIff: Guiding Dual-Arm Grasp Diffusion to Stable and
Collision-Free Grasps

Abstract— Reliable dual-arm grasping is essential for ma-
nipulating large and complex objects but remains a chal-
lenging problem due to stability, collision, and generalization
requirements. Prior methods typically decompose the task into
two independent grasp proposals, relying on region priors or
heuristics that limit generalization and provide no principled
guarantee of stability. We propose DAGDIff, an end-to-end
framework that directly denoises to grasp pairs in the SFE(3) x
SE(3) space. Our key insight is that stability and collision can
be enforced more effectively by guiding the diffusion process
with classifier signals, rather than relying on explicit region
detection or object priors. To this end, DAGDIiff integrates
geometry-, stability-, and collision-aware guidance terms that
steer the generative process toward grasps that are physically
valid and force-closure compliant. We comprehensively evalu-
ate DAGDIff through analytical force-closure checks, collision
analysis, and large-scale physics-based simulations, showing
consistent improvements over previous work on these metrics.
Finally, we demonstrate that our framework generates dual-
arm grasps directly on real-world point clouds of previously
unseen objects, which are executed on a heterogeneous dual-
arm setup where two manipulators reliably grasp and lift them.
Project Page: dag-diff.github.io/dagdift/

I. INTRODUCTION

Manipulating large, dual-arm relevant objects such as
monitors, boxes, or chairs requires not only feasible grasps,
but also reasoning about force balance and stable interaction
between both arms. Imagine the task of picking up a monitor.
Humans instinctively place their hands on the opposite sides
of the monitor instead of grasping it at random points to
balance forces and torques, ensuring stability. For robots,
however, acquiring this kind of coordination is far more
complex [1]. Developing this sense of dual-arm stability
is essential for moving beyond single-arm grasping toward
coordinated, physically robust manipulation of real-world
objects [2]-[5].

While grasp pose generation has been explored extensively
in the community, most efforts largely focus on single-arm
settings. Most methods [6]-[11] follow a general recipe of
curating a paired dataset consisting of ground truth grasps
evaluated using physics simulators, followed by training
encoder-decoder style models in a supervised setting. Re-
cently, diffusion models have emerged as powerful generative
frameworks for robotic grasping [12]-[16] due to their ability
to model complex multimodal distributions. This enables
them to sample diverse, high-quality grasp poses either
uniformly across the object or constrained to specific parts.

While these methods have improved robustness and grasp
quality on complex shapes, they are designed for single-arm
grasps and lack mechanisms to ensure dual-arm stability.
Moreover, extending these methods to dual-arm grasping
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Fig. 1: We introduce DAGDIff: Dual-Arm Grasp Diffusion, a diffusion
framework in SE(3) x SE(3) that takes an object point cloud and denoises
noisy grasp pairs (in shades of red) into stable, collision-free dual-arm grasps
(in shades of green), guided by multi-head outputs. These predicted grasps
are further validated through real-world dual-arm executions, where objects
are grasped and lifted successfully.

is non-trivial, as exhaustive pair search is costly and naive
single-arm extensions often yield unstable solutions [17].
Furthermore, these methods do not explicitly account for
collisions and often produce grasps that intersect the object
surface, a problem that becomes increasingly critical for
larger and more geometrically complex shapes. A possible
workaround would be to increase the resolution of the
point cloud or latent representation to capture finer surface
details, but this would greatly increase computation without
guaranteeing collision-free grasps.

In this work, we introduce DAGDIiff: Dual-Arm Grasp
Diffusion, an end-to-end dual-arm grasp generation frame-
work that leverages diffusion models guided by classifier
signals. Our method extends SE(3) diffusion to the dual-
arm setting to generate grasp pairs that are simultaneously
stable under dual-arm force closure and collision free with
respect to the object’s surface.

We frame dual-arm grasp generation as the task of gen-
erating two grasps on the object point cloud, each falling
in a suitable region, such that they are jointly stable and
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physically valid (by physically valid we mean grasps that
are collision free, and make stable surface contact with the
object). One of the key challenges is region selection: heuris-
tic approaches such as choosing farthest regions [12] often
fail when those regions itself are physically incompatible,
while VLM-based reasoning [18] remains limited in 3D
and physical understanding [19], [20]. It is further hindered
by the fact that graspable regions rarely have semantic
names, leaving no reliable basis for prediction. In contrast,
our approach does not rely on region-specific training but
instead learns suitable grasp regions implicitly from guid-
ance signals, and we observe that it naturally discovers the
right pairs of regions for stable dual-arm grasps (given in
supplementary video). Specifically, a force-closure module
distinguishes stable from unstable grasp pairs and provides
gradients that bias the diffusion process toward stability,
while a collision module identifies grasp—object intersections
and pushes generated grasps away from collisions. Together,
these signals guide the diffusion model to diverse, stable, and
physically valid dual-arm grasps.

Our evaluation demonstrates the effectiveness of the pro-
posed method in generating stable grasps within a dual-
arm setup. Analytical evaluation based on dual-arm force-
closure criteria [17] confirms that the generated grasp pairs
satisfy fundamental stability requirements, while physics
simulation-based evaluation [21] highlights the robustness of
our approach across diverse objects and grasp configurations.
Finally, real-world demonstrations show that our framework,
trained entirely on synthetic data, transfers effectively to
real point clouds, producing physically realizable dual-arm
grasps on previously unseen objects like cooking utensils,
buckets, drones etc as shown in Figure m To summarize the
contributions:

1) We present DAGDIff, the first framework to the best
of our knowledge, for dual-arm grasp generation that
extends SE(3) diffusion with guidance signals, en-
abling the synthesis of grasp pairs that are both force-
closure stable and collision-free on large, geometrically
complex objects.

2) Unlike prior methods that rely on region identifica-
tion using VLMs or geometric heuristics, our architec-
ture employs geometry-, stability-, and collision-aware
multi-head outputs that directly guide the diffusion
process toward valid regions of the dual-arm grasp space
(Figure [2).

3) We show substantial improvements over prior methods
and adapted baselines through analytical metrics and
large-scale simulations (Table m), and further validate
reliable zero-shot transfer on a heterogeneous real-world
dual-arm setup with real point clouds and previously
unseen objects (Figure [I).

II. RELATED WORKS

A. Dual-Arm Grasping and Stability

Dual-arm grasping requires two parallel-jaw grasps that
are not only individually stable but also jointly satisfy stabil-
ity criteria such as force-closure, i.e., the contact forces must

counteract any external wrench on the object [22]. Mesh-
based approaches like [17], [23] address this by densely
sampling single-arm grasps on object meshes and evaluatin
g all grasp pairs with a dual-arm force-closure test. While
this ensures stability in simulation, the reliance on complete
meshes and exhaustive pair evaluation makes these methods
impractical for real-world perception and deployment. To
reduce this combinatorial complexity, CGDF [12] employs a
part-guided diffusion strategy that generates grasps in the two
farthest regions of the point cloud, forming dual-arm pairs.
Further, UniDiffGrasp [18] extends this idea by incorporat-
ing a VLM to identify object parts for dual-arm grasping.
However, these methods still treat the problem as combining
two single-arm proposals without explicitly enforcing joint
stability. In contrast, DualAfford [24] directly predicts dual-
arm grasp poses through collaborative affordance learning,
generating one gripper’s grasp conditioned on the other.
While this captures inter-gripper dependencies, the method
relies on object category-specific training and an intricate
pipeline, which limits its generalization. To overcome these
issues, we propose an end-to-end diffusion framework to
implicitly learn the distribution of stable dual-arm grasps
without relying on external region-proposals or object-centric
pipelines.

B. Diffusion Models for Grasp Generation

Diffusion models, which are particularly suited for cap-
turing multimodal distributions, have emerged as a powerful
alternative to previous classical as well as deep-learning
based methods for grasp synthesis [7]-[9], [11], [22], [25].
SE3Diff [13] introduced diffusion in the SE(3) space for
sampling diverse single-arm grasps, and [26] implemented
this idea for partial point clouds along with refinement
using collision spheres. CGDF [12] extended diffusion in
SE(3) with improved feature representations for constrained
grasping on complex shapes. More recently, [14] combined
diffusion with transformers to scale grasp generation to large
datasets with strong sim-to-real performance. Beyond single-
arm settings, diffusion has also been explored for dexterous
and multi-fingered hands, with recent works [15], [16], [27]
demonstrating its effectiveness for generating stable and
generalizable grasps in high-DOF gripper settings. Together,
these approaches demonstrate the flexibility of diffusion for
both simple and high-DOF grasp generation. However, they
do not naturally extend to the dual-arm setting, where the
challenge is not only generating individually valid grasps but
also ensuring their joint stability. In this work, we address
this challenge by introducing guidance signals that steer the
diffusion process toward grasp pairs that are both feasible
and dual-arm stable.

III. METHODS

Given an object point cloud P € R™*3, our goal is to
generate M pairs of force closure stable and collision-free
parallel-jaw grasp poses H; = (H;1,H;2) € SE(3) x
SE(3),i € [1, M] on P. The feasibility of H is determined



t sdf

» converted to points

@

H:(Bx2x4x4)

T Output Heads

Convolutional Multi-Plane

- Encoder
Q
= P
_, £ ., i
o — o
—>
2
4 s
P:1000 x 3 > 1000 x 3 =
Multi-Plane
Features UNet
1. Rand Grasp Pair Initialization 2. Force Closure Guided Diffusion

(b)

query Energy : E, — : )

Dual Force
Closure : lef

—>

—®

Bilinear
Interpolation

Collision : C§°l — : )

t =250

Fig. 2: Overview of the proposed method: (a) Given an object point cloud P, our network encodes geometric features into dense feature maps. Next,
randomly initialized dual-arm grasps H are used to transform a fixed query cloud into query points, followed by feature sampling through bilinear
interpolation. Conditioned on the noise step ¢, these features are passed through Fy, which predicts both the SDF of the query points and a feature vector.
This vector is used by three output heads that predict energy (Eq ), force-closure probability (C’g), and collision probability (C%"l), jointly guiding the
diffusion process. (b) At inference, denoising proceeds from random initializations (¢ = 250) to refined grasps (¢ = 0). The energy head drives the
generative dynamics, while the force-closure and collision heads bias the generation until stable, collision-free dual-arm grasps emerge.

jointly by (i) whether each grasp maintains a stable, non-
colliding contact with the object surface, and (ii) whether the
pair jointly satisfies the dual-arm force-closure constraints
[17]. To address this, we formulate dual-arm grasp generation
as a diffusion process in SE(3) x SE(3). Starting from
random pairs of initial poses, we iteratively refine grasp
candidates toward physically valid configurations using the
score function learned by an energy-based model. In addi-
tion to it, we jointly train two classifier-guidance modules
— a force-closure classifier and a collision classifier, that
provide gradient signals during inference. Together, these
components enable the model to generate low-energy, dual-
arm stable, and collision-free grasp pairs as shown in Figure
2

To formalize diffusion in the SE(3) x SE(3) space, we
introduce the following notation. The dual-arm logarithmic
map Logmaps: SE(3) x SE(3) — R!? is defined as:

v = Logmaps (H) := Logmap (H;) @ Logmap (Hs)

where @ is the vertical concatenation operator. Similarly,
we define the dual-arm exponential map Expmaps: R'2 —
SE(3) x SE(3) as:

H = Expmaps (v) := (Expmap (V[:(;]) , Expmap (V[G:]))

where v},6) and v[g.) refer to the first and last six components
of the vector v € R12,

In this section, we first discuss the formulation of a
diffusion-based dual-arm grasp generation model (A), then
formulate the classifier guidance modules for force-closure

and collision (B) and finally outline the architecture of the
complete generation model (C).

A. Diffusion-based Dual-arm Grasp Generation

We adapt the diffusion formulation of SE3Diff [13] to
the dual-arm setting. A dual-arm grasp pose H lies in
SE(3) x SE(3), where each element of the pair lies in a
Lie group that does not allow direct Euclidean operations.
To address this, we map H to a vector v € R'? using
Logmap,, which allows the diffusion process to operate in
R'2, while Expmaps, is used to convert perturbed samples
back to SE(3) x SE(3). The denoiser is then defined as a
vector field s,, that predicts a vector d € R'? given a dual-
arm grasp pose H, the object point cloud P, and the noise
step t € [0,T"), where T is the total number of noise steps.

Energy Based Formulation: In standard diffusion mod-
els, one option is to directly predict the added Gaussian noise
at each noise step. However, learning the score function [28]
has shown to yield more stable training and better likelihood
modeling, since the score directly captures the structure of
the noisy distribution. Formally, the score is defined as:
s(H, P, t) = Vylogp:(H|P), where p; is the distribution
of the noisy grasps at noise step ¢.

Hence, we create an energy-based model E,, with
learnable parameters «, to learn a scalar energy land-
scape over dual-arm grasp poses and an input object
point cloud along with the current noise step. Formally,
Eo: SE(3) x SE(3) x R"3 x R — R. The denoising
vector field is then obtained as the negative gradient of the



energy, given by,
so(H,P,t) = =V E.(H,P,t) € R? (1)

This formulation is equivalent to score-based diffusion, with
the advantage that the energy function also provides a natural
way to rank grasp candidates. Lower energy indicates grasp
pairs that are physically grounded on the object rather than
arbitrarily floating in free space.

Forward and Reverse diffusion: During training, the
forward diffusion process perturbs the ground truth dual-arm
grasp poses by adding noise in R'2. The perturbed vector
is converted back to SE(3) x SE(3) using the Expmaps
operation as:

Hy = Expmap;(Logmapy (H) + €;) , 2)

where ¢, ~ N(0,07112) and oy is the standard deviation
at noise step ¢. This forward process progressively produces
noisier versions of the grasp poses, which are used to train
the model to denoise. At inference, the denoising process
iteratively removes noise using a Langevin-style update.
Given a noisy sample, H;, the reverse step is defined as:

2
H;_; = Expmap, (772t sq(Hy, Pyt) + 77t6) H;, ()

where € ~ N(0,I;2) and 7, > 0 is a step-dependent
coefficient controlling the update magnitude.

Loss function: The diffusion network is trained using
the regular denoising loss function as the L1 norm between
the normalized sampled noise Z—i and predicted vector field
Sa(Hy, P,t). Formally,

€t
Ot

S(X(Ht7p7 t) (4)

Lt =

1
B. Classifier Guidance Modules

Naively training a diffusion model in the dual-arm setting
leads to poor generalization, since there is no explicit con-
straint enforcing the generation of stable dual-arm grasps.
To address this, we adopt classifier-guided diffusion [29],
which steers the generative process toward desired regions
of the sample space by incorporating classifier log-likelihood
gradients at each reverse step, thereby biasing the generation
toward samples with specific properties.

We employ two classifier-guidance modules. The first is
a force-closure classifier Cgc = p(y = 1|H, P;B) with
learnable parameters (3, which predicts the probability that a
dual-arm grasp pair H on object point cloud P satisfies the
force-closure stability criterion. During inference, its gradient
with respect to the grasp pose guides the diffusion process
toward force-closure stable configurations. The second is a
collision classifier C$°' = p(y = 1|H, P;~) with learnable
parameters y, which predicts the probability that a grasp
pose H is in collision with the object point cloud P. During
inference, its gradient is used to refine generated candidates
by pushing them away from collisions with the object.

Both classifiers are trained with the standard binary cross-
entropy loss:

Lie = BCE(CES(H, P), yr) (5)
Lool = BCE(CSOI(Hy P)7 ycol) (6)

where yg. € {0,1} indicates whether the grasp pair satisfies
force closure, and y. € {0,1} x {0,1} denotes which
grasp(s) in the pair collide with the object. The overall
training objective then combines the diffusion loss (Equation
M) with the classifier losses (Equation [3] [6) as:

L = Laitt + Lic + Leol @)

At inference time, the gradients from these classifiers are
combined with the base diffusion score, steering the sampling
process toward low-energy regions that also satisfy stability
and collision constraints ensuring that the final grasp pairs
are dual-arm stable as well as physically valid. The final
score is then defined as,

$(H,P,t) = so(H, P,t) + Vi log C5C(H, P)

0, ift <t., (8
+
Vi log(1—CS(H, P)), ift>t,

where t. denotes a predefined threshold, after which collision
guidance is activated to progressively refine the generated
grasps, as refinement is unnecessary while the grasps remain
in free space. The corresponding reverse update then follows
the same formulation defined in Equation [3]

C. Model Architecture

Our framework (Figure [2)) extends diffusion-based grasp
generation to the dual-arm setting by introducing a geometry-
aware Vision Encoder and a set of specialized Output Heads
that jointly enforce feasibility, stability, and collision-free
interaction.

Feature Encoding. Inspired from [12], the input point
cloud P is encoded using a VN-PointNet [30] to extract
SO(3)-equivariant per-point features, which are further pro-
cessed through multi-plane projections and a UNet backbone
[31]. Next, dual-arm grasp poses are transformed by a fixed
query point cloud P, € R3°%3 to get Py, which represents
the local grasp region on the object point cloud. We then
retrieve plane features at the projected locations of Py using
bilinear interpolation. These features are then aggregated
and passed through the feature encoder Fjy that conditions
on the diffusion step ¢ and jointly predicts (i) a feature
vector representation and (ii) the SDF of the query points
for geometric supervision.

Multi-Head Output. The resulting feature vector is then
passed through three heads that play distinct yet tightly
coupled roles in the generation step:

1. Energy Head: It outputs a scalar energy E,(H, P,t) €
R, where lower energy corresponds to more physically valid
grasps. It serves as the backbone of the diffusion process:
during training, its gradients teach the model to denoise
noisy samples toward low-energy configurations, and during
inference, it provides the base generative dynamics.
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Fig. 3: Qualitative comparison of dual-arm grasps. VCGS often fails due to poor grasp generation and its farthest-region heuristic. CGDF shares the latter
limitation, for example, on the bucket, one gripper cannot reach the bottom corner. UniDiffGrasp relies on GPT-4V and VLPart for semantic segmentation,
but when region labels are ambiguous (e.g., last two rows), it defaults to naive splits, yielding unstable grasps. RoboBrainGrasp predicts keypoints or
bounding boxes, yet the keypoints are frequently misaligned (e.g., inside the stool) and the boxes too coarse for precise grasping. In contrast, our method
directly generates stable, collision-free dual-arm grasps by reasoning over physical constraints, without heuristics or vague semantic cues. (Red circles
indicate grasps that either collide or fail to contact the object. RoboBrainGrasp-KP and -BB are referred to jointly as RoboBrainGrasp.)

2. Force-Closure (FC) Head: It predicts the probability
that a candidate grasp pair achieves force-closure. Impor-
tantly, it is trained jointly with the Energy Head, ensuring
that the backbone generative process is directly coupled with
physically meaningful stability supervision. During infer-
ence, its gradients act as guidance signals that bias generation
toward dual-arm stable regions of the pose space.

3. Collision Head: It predicts the probability of either
gripper intersecting the object point cloud. This head is
trained after the Vision Encoder, Energy, and FC heads have
converged, allowing it to specialize in detecting fine-grained
collisions without disturbing the generative objectives. Dur-
ing inference, its gradients are activated after an initial
denoising stage, progressively refining candidate grasps by
pushing them away from collisions. While our network also
predicts SDFs, these are not used for collision refinement

since differentiable collision detection is non-trivial and SDF
gradients do not guarantee effective grasp refinement.

Together, the three heads form a cooperative architecture:
the Energy Head drives diverse and physically valid gen-
eration, the FC Head enforces joint grasp stability, and the
Collision Head ensures geometric validity. Through this, our
framework overcomes the shortcomings of prior methods
[12], [18] that treat dual-arm grasping as a combination of
independent single-arm grasp proposals.

IV. EXPERIMENTS

In this section, we describe the dataset, evaluation metrics
and the performance of our method compared with different
baselines. First, we uniformly sample 1000 points from each
object mesh to construct the input point cloud used during
inference. For each run, a batch of B dual-arm grasps
{H; € SE(3) x SE(3)}2., are randomly initialized , and
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Fig. 4: Real-world experimental setup. Dual-arm system with an XArm7
and XArm6 Lite, calibrated using an AprilTag and observed by two Re-
alSense D455 cameras.

the diffusion process is applied for T' = 250 denoising steps
using the formulation defined in Section We use the
last 50 steps for collision refinement, since by this stage
most grasps have converged to feasible regions, with only
a small subset intersecting slightly with the object surface.
The importance of this refinement stage is further supported
by the ablation study in Section After denoising and
refinement, the final set of generated dual-arm grasps are
evaluated using the metrics discussed later in this section.

Dataset: We train and evaluate our model and baselines
on the DG16M dataset [17]. The dataset contains 4,143
objects, each consisting approximately 2,000 positive and
negative dual-arm grasps validated under improved force-
closure evaluation. For our experiments, we adopt a random
split in which 400 objects are reserved for testing and
the remaining objects are used for training. All reported
quantitative results are evaluated on this unseen test split.
In addition, we construct a synthetic dataset of colliding
and non-colliding dual-arm grasps by sampling grasp poses
and checking for collisions with the object. This is used
exclusively to train the Collision Head.

Baselines. To assess the performance of our framework,
we compare against three categories of baselines for dual-
arm grasping: (i) Farthest-region grasping, (ii) VLM-region
based grasping, and (iii) Affordance-based grasping.

Farthest-region grasping. CGDF [12] applies a part-
guided strategy to generate grasps in the two farthest regions
of the point cloud and combines them into dual-arm pairs.
Additionally, VCGS [32] uses a variational grasp generation
model to generate single-arm grasps in constrained regions
and we use it in the same setup as used in [12] for evaluation.

VLM-based region grasping. UniDiffGrasp [18] uses
GPT-4V [33] and VL-Part [34] to predict two graspable
regions on the object and then applies the CGDF part-guided
strategy to form dual-arm pairs. To also study the effect
of different VLMs, we adapt this baseline by predicting
the regions through bounding-box and keypoint prediction

using RoboBrain 2.0 7B [35], a model trained on em-
bodied reasoning tasks. We call these adapted baselines
as RoboBrainGrasp-BB and RoboBrainGrasp-KP respec-
tively.

Affordance-based grasping. DualAfford [24] predicts
functional object regions for dual-arm interaction and gener-
ates the grasp pairs by sequentially conditioning the second
gripper’s pose on the first. We did not retrain this baseline
on our evaluation dataset due to its complex and object
category-specific training pipeline. Instead, we evaluated our
framework in a zero-shot manner on the test category objects
used in DualAfford’s pickup task.

Metrics. We evaluate the performance of the proposed
method and baselines using Force Closure Evaluation (FCE),
Grasp Success Rate (GSR) and Grasp Collision Rate (GCR).
These metrics together capture analytical grasp stability,
physical robustness, and geometric feasibility.

Force Closure Evaluation (FCE): Following the same
formulation in DG16M [17], this analytical metric verifies
whether a grasp achieves force closure by testing if the
applied contact forces can resist arbitrary external wrenches
under friction and gripper force constraints. FCE provides a
theoretical guarantee of stability and is the primary analytic
measure of our grasp quality.

Grasp Success Rate (GSR): This simulation-based metric
evaluates the physical robustness of generated grasps in Isaac
Gym [21]. Each grasp is executed by initializing floating
grippers at the predicted grasp pose, closing the fingers, and
then enabling gravity. A trial is marked as successful if the
object is lifted to a defined height and remains stably grasped.
GSR captures whether grasps that satisfy analytic criteria
also translate to positive executions under dynamics.

Grasp Collision Rate (GCR): This metric measures the
percentage of generated grasps whose final pose intersects
with the object geometry. A lower collision rate indicates
better geometric validity and effectiveness of the collision-
guidance mechanism.

V. RESULTS AND ABLATION

Qualitative Results. Figure [3| illustrates qualitative com-
parisons across methods. For CGDF and VCGS
[(2), (b)), the farthest-region heuristic often selects physically
incompatible grasp regions, such as on the bucket where
one gripper is forced to an unstable corner. Even when
the chosen regions happen to be graspable, like in the case
of the chair and stool, the resulting configurations require
excessive or unbalanced contact forces. For the VLM-based
baselines, as seen in the stool and ironing-table, RoboBrain-

based methods predict coarse bounding boxes

and keypoints that either lie in free space or fail to align

with usable regions. Similarly, UniDiffGrasp (Figure 3(c))
often defaults to arbitrary splits (e.g., the bucket), which

result in unstable grasps. In contrast, DAGDiff
consistently produces dual-arm grasps that are both stable
and collision-free, without relying on heuristics or semantic
labels and performs twice as good compared to previous
methods in all three metrics. Our classifier-guided diffusion



Method FCE(%)T GSR(%)1 GCR(%)| Variant FCE(%)T GSR(%)T GCR(%)/

DAGDiIff (ours) 60.14 72.50 15.10 DAGDiIff (ours) 60.14 72.50 15.10

CGDF [12] 35.14 56.25 30.55 w/o FC Head 24.94 30.06 16.85

VCGS [32] 16.85 23.36 74.73 w/o Collision Head 50.01 55.67 23.50

UniDiffGrasp [18] 10.10 31.68 59.90 Post-hoc FC Head 32.37 46.42 18.36

RoboBrainGrasp-KP [35] 9.80 27.85 66.30

RoboBrainGrasp-BB [35] 712 2781 70.26 TABLE 1I: Al?lation study with three variants: without forge—closure head,
without collision head, and with post-hoc FC Head. Metrics reported are

Ours-DA' 56.45 68.80 18.59 FCE, GSR, and GCR.

Dual-Afford'" [24] - 54.33 -

fEvaluated on Dual-Afford objects in a zero-shot setting.
f values reported directly from the DualAfford paper.

TABLE I: Comparison of dual-arm grasp generation methods. Higher is
better for FCE and GSR; lower is better for GCR.

discovers physically consistent grasp regions directly, en-
abling reliable dual-arm grasp generation across diverse and
complex object geometries.

Quantitative Results. Table [] summarizes the perfor-
mance of DAGDiff compared to other baselines. Farthest-
region heuristics (CGDF, VCGS) perform poorly in FCE and
GSR because they decouple grasp selection from stability.
VCGS further suffers from its reliance on a global shape
representation, which explains its very high GCR. VLM-
based methods (UniDiffGrasp, RoboBrainGrasp) also show
poor performance in all metrics, as their semantically pre-
dicted regions are frequently coarse or misplaced due to
limited 3D and physical reasoning which leads to grasps
generated in the unsuitable object regions. Finally, compared
to DualAfford [24], which reports results from category-
specific models, our single unified model achieves higher
GSR in a zero-shot setting (under the same evaluation proto-
col), indicating stronger generalization to unseen categories.
Overall, by coupling diffusion with explicit stability and
collision guidance, DAGDiff overcomes the core limitations
of heuristic, semantic, and affordance-based baselines, pro-
ducing grasps that are jointly stable and generalizable. As
shown in Table |I} it achieves 60.1% FCE, 72.5% GSR, and
15.1% GCR, roughly twice the stability and success of the
baselines, while reducing collisions by more than half.

Ablations. The key design choice in our framework is the
use of classifier gradients to guide grasp generation, ensuring
that the final dual-arm grasps are physically valid and stable.
To assess the necessity of this design, we conduct ablation
studies to study its contribution, as shown in Table

(A) Generation without the Force-Closure Head: In this
variant, we remove the Force-Closure head and rely solely on
the Energy head’s denoising objective for grasp generation.
This leads to a significant drop in both FCE and GSR,
indicating that the Energy head alone cannot reliably capture
dual-arm stability. Because the FC head is explicitly trained
to discriminate between stable and unstable dual-arm grasp
pairs, its gradients provide precise and meaningful guidance
during generation. This highlights the necessity of explicit
force-closure guidance for producing stable dual-arm grasps.
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TABLE III: Real-world dual-arm grasp execution results. Each entry shows
the number of successful grasps over total attempted grasps for the corre-
sponding object.

(B) Generation without Collision Head: Next, we remove
the Collision Head and evaluate the grasps without collision
refinement, and notice that the collision rate increases from
15.10% to 23.50%. This causes the grasps to make incorrect
contact with the object surface and this affects FCE and GSR
negatively too. The Collision Head provides explicit signals
to avoid collisions, which the other heads cannot enforce.

(C) Post-hoc FC Head training: To test if the Force-
Closure (FC) head could be added post-hoc, we first trained
the vision encoder and Energy head, then froze them and
trained the FC head separately. This makes FCE and GSR
drop substantially, as the encoder could not adapt to the
classification objective, leaving the FC head with weak
features and poor guidance. This shows that the FC head
is not a plug-and-play module but must be jointly trained
with the encoder to learn stability-aware representations that
effectively guide grasp generation.

VI. REAL LIFE EXPERIMENTS

We validated our framework on a heterogeneous dual-arm
setup (Figure @) with an XArm7 and an XArm6 Lite, using
two Intel RealSense D455 cameras for point cloud fusion
via ICP. The fused point cloud P was passed to our trained
model to generate dual-arm grasps, pruned to retain only
kinematically reachable ones. In 10 real-world trials (Table
, most executions were successful, while failures were
mainly from the loss of detail in point cloud reconstruction,
which led to incorrect generation of grasps. These results
show that our method achieves zero-shot transfer to real
sensor data, handling previously unseen objects such as
drones and kitchen utensils like saucepans and trays.

VII. CONCLUSION

In this work, we present DAGDIff, a novel diffusion-based
framework for generating stable and collision-free dual-arm
grasps directly in the SE(3) x SE(3) space. By guiding
the generative process with force-closure and collision-
aware signals, our method outperforms heuristic or region
detection-based pipelines and demonstrates reliable zero-shot
transfer to previously unseen objects in real-world trials.



While effective, the framework currently assumes complete,
segmented point clouds and does not account for closed
chain kinematics. Moreover, its inference speed is limited
by the iterative nature of diffusion. As future work, we
aim to address these limitations by extending the approach
to partial observations, and conducting comprehensive real-
world evaluations, paving the way toward more scalable and
practical dual-arm manipulation.
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